Studies in the Steroid Group. Part LXXXIII. ${ }^{1}$ 1-, 2-, 3-, 4-, 6-, 12-, 15-, and 16-Monohydroxy-5 α-androstanes and their Derivatives

By I. M. Clark, A. S. Clegg, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins,* and A. Pendlebury, Dyson Perrins Laboratory, Oxford University, South Parks Road, Oxford OX1 30Y

Abstract

The following new compounds have been prepared: $2 \alpha-, 4 \alpha-, 4 \beta-, 6 \beta$ - and 12α-hydroxy- 5α-androstanes; the acetates of these alcohols and of the $1 \alpha-1 \beta-, 2 \beta-6 \alpha-12 \beta-15 \alpha$ - and 15β-hydroxy- 5α-androstanes; 3α - and 3β-hydroxy- 5α-androst- 1 -ene and 1β-hydroxy- 5α-androst- 2 -ene; a series of esters and ethers derived from the 3 -hydroxy- 5α-androstanes. Some methoxy- 5α-androstanes were obtained conveniently from the alcohols with diazomethane.

The present paper records the properties of some mono-hydroxy- 5α-androstanes and their derivatives (esters and ethers) prepared in connection with microbiological hydroxylation studies. ${ }^{2}$ These substances were required to serve as substrates, or as reference compounds during the structural elucidation of products obtained microbiologically. Since the work is straightforward it is presented in a form similar to that used previously. ${ }^{1}$ The reactions and the products are shown in the Scheme and commentary is unnecessary. The conventions used in the Scheme, the position with regard to new compounds (i.e. those whose abbreviated names are not followed by a reference), and the citing of the spectrometric data (in refs. 3 and 4, or here), are fully explained in the preceding paper. ${ }^{1}$ Section (A) of the Scheme portrays the reduction of 5α-androstane monoketones to alcohols, and acetylation of the latter. These compounds were needed to complete our collection of secondary monohydroxy- 5α-androstanes; it is surprising that so few of the alcohols in this section have been described previously. Section (B) contains a miscellany of microbiological substrates derived from the 3 -hydroxy- 5α-androstanes. In section (C) the conversion of some hydroxy-compounds into their methyl ethers is shown. Most of the products are known compounds, but they are obtained much more conveniently by the acid-catalysed diazomethane reaction ${ }^{5}$ than by the published routes. [3α-Methoxy- 5α-androstane (XLI), whose preparation by the present method has already been mentioned ${ }^{5 b}$ is included in the Scheme for completeness.]

EXPERIMENTAL

For general directions see ref. 2. Arabic numbers are given after the formulae numbers of compounds connected with microbiological work: the n.m.r. signals of these compounds, Nos. 394-411, are listed in the Table. [17ß-Hydroxy-5 α-androstan-3-one (II) (No. 411) is included, since this compound was inadvertently omitted from the earlier n.m.r. Tables. ${ }^{3}$] Petrol refers to light petroleum, b.p. $60-80^{\circ}$.

Work in Section (A) of the Scheme.-(a) A solution of $5 \alpha-$ androst-2-en-1-one (1.6 g) in dry $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ was added
${ }_{1}$ Part LXXXII, A. S. Clegg, W. A. Denny, E. R. H. Jones, V. Kumar, G. D. Meakins, and V. E. M. Thomas, preceding paper.
${ }^{2}$ J. W. Blunt, I. M. Clark, J. M. Evans, E. R. H. Jones, G. D. Meakins, and J. T. Pinhey, J. Chem. Soc. (C), 1971, 1136.
${ }^{3}$ J. E. Bridgeman, P. C. Cherry, A. S. Clegg, J. M. Evans, E. R. H. Jones, A. Kasal, V. Kumar, G. D. Meakins, Y. Morisawa, E. E. Richards, and P. D. Woodgate, J. Chem. Soc. (C), 1970, 250.
during 30 min to a stirred suspension of $\mathrm{LiAlH}_{4}(0.5 \mathrm{~g})$ in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$. The mixture was stirred at $20^{\circ} \mathrm{C}$ for 2 h . $2 \mathrm{~N}-\mathrm{NH}_{4} \mathrm{Cl}$ was added and the ethereal layer was separated to give material (1.56 g) which was chromatographed on SiO_{2} gel $\left[100 \mathrm{~g}\right.$; deactivated with $\left.\mathrm{H}_{2} \mathrm{O}(3 \%)\right]$. PetrolEtOAc (9:1) eluted $5 \alpha-a n d r o s t-2-e n-1 \beta$-ol (VI) (No. 103) (571 mg), m.p. 99- 100° (from hexane), $[\alpha]_{\mathrm{D}}+9^{\circ}\left(\begin{array}{cc}c & 1-1)\end{array}\right.$ (Found: C, $83 \cdot 1 ; \mathrm{H}, 11 \cdot 1 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}$ requires $\mathrm{C}, 83 \cdot 15$; $\mathrm{H}, 11 \cdot 0 \%$), $\nu_{\text {max }} .3613 \mathrm{~cm}^{-1}$. Further elution with the same solvent mixture gave 5α-androst- 2 -en- 1α-ol (V) (No. 101) (71 mg), m.p. $102-103^{\circ}$ (lit., ${ }^{6} 103^{\circ}$), identified by comparison (mixed m.p., i.r. spectra) with authentic material, $\nu_{\text {max }} 3615 \mathrm{~cm}^{-1}$.
(b) Similar treatment of 5α-androst-1-en- 3 -one (3.7 g) with $\mathrm{LiAlH}_{4}(1 \cdot 2 \mathrm{~g})$ in $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{ml})$ was followed by chromatography of the product on deactivated SiO_{2} gel $(200 \mathrm{~g})$. Elution with petrol- $\mathrm{Et}_{2} \mathrm{O}$ (93:7) gave $5 \alpha-$ androst-1-en-3 α-ol (VII) (No. 110) (210 mg), m.p. $127-130^{\circ}$ (from hexane) (Found: C, $83 \cdot 25 ; \mathrm{H}, 11 \cdot 1 \%$), $\nu_{\max } 3615$ cm^{-1}, and then 5α-androst-1-en-3 β-ol (VIII) (No. 113) ($2 \cdot 33$ g), m.p. 121-122 ${ }^{\circ}$ (from hexane) (Found: C, 83.1; H, $11 \cdot 1 \%$), $v_{\text {max. }} 3608$ and $1025 \mathrm{~cm}^{-1}$. Petrol-Et $\mathrm{E}_{2} \mathrm{O}(9: 1)$ eluted a mixture (1.06 g) which was separated into three components by p.1.c. [4 large plates, $3 \times$ petrol- $\mathrm{Et}_{2} \mathrm{O}$ (3:2)]. The band of highest R_{F} gave 5α-androst-1-en- 3α-ol (5 mg); the second band gave 5α-androst-1-en- 3β-ol (610 mg); the band of lowest R_{F} gave 5α-androstan- 3β-ol (397 mg), m.p. and mixed m.p. $150-151^{\circ}$.
(c) A solution of 5α-androstan- 2 -one (500 mg) and $\mathrm{NaBH}_{4}(100 \mathrm{mg})$ in tetrahydrofuran (10 ml) $-\mathrm{MeOH}(1 \mathrm{ml})$ was stirred at $20^{\circ} \mathrm{C}$ for 1 h . The material isolated with $\mathrm{Et}_{2} \mathrm{O}$ was separated by p.l.c. [1 large plate, $1 \times$ petrol $\left.\mathrm{Me}_{2} \mathrm{CO}(17: 3)\right]$ to give 5α-androstan- 2β-ol (XV) (No. 106) (297 mg ; higher R_{F}), m.p. $133-134^{\circ}$ (from MeOH), $[\alpha]_{\mathrm{D}}$ $+10^{\circ}\left(\begin{array}{ll}1.0\end{array}\right)$ (lit., ${ }^{7}$ m.p. $\left.134-135^{\circ},[\alpha]_{\mathrm{D}}+12^{\circ}\right)$, and $5 \alpha-$ androstan- 2α-ol (XIII) (No. 105) (139 mg ; lower R_{F}), m.p. 128-129 ${ }^{\circ}$ (from MeOH), $[\alpha]_{\mathrm{D}}+5^{\circ}$ (c $1 \cdot 0$) (Found: C, $82.5 ; \mathrm{H}, 11.7 . \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}$ requires $\mathrm{C}, 82 \cdot 5 ; \mathrm{H}, 11.7 \%$).
(d) Similar reduction of 5α-androstan- 4 -one (300 mg) with $\mathrm{NaBH}_{4}(50 \mathrm{mg})$ followed by p.1.c. [1 large plate, $1 \times$ petrol- $\left.\mathrm{Me}_{2} \mathrm{CO}(9: 1)\right]$ gave 5α-androstan- 4β-ol (XIX) (No. 119) (197 mg ; higher R_{F}), m.p. 120-121 ${ }^{\circ}$ (from $\mathrm{MeOH}),[\alpha]_{\mathrm{D}}+7^{\circ}(c 1 \cdot 1)$ (Found: C, $82.6 ; \mathrm{H}, 11.9 \%$), and 3α-androstan- 4α-ol (XVII) (No. 118) (23 mg ; lower R_{F}),
${ }^{4}$ A. D. Boul, J. W. Blunt, J. W. Browne, V. Kumar, G. D. Meakins, J. T. Pinhey, and V. E. M. Thomas, J. Chem. Soc. (C), 1971, 1130.
${ }_{5}{ }^{\prime}(a)$ M. Neeman, M. C. Caserio, J. D. Roberts, and W. S. Johnson, Tetrahedron, 1959, 6, 36; (b) J. M. Evans, G. D. Meakins, Y. Morisawa, and P. D. Woodgate, J. Chem. Soc. (C), 1968, 2841.
${ }^{6}$ H. Powell, D. H. Williams, H. Budzikiewicz, and C. Djerassi, J. Amer. Chem. Soc., 1964, 86, 2623.
${ }^{7}$ J. E. Gurst and C. Djerassi, J. Amer. Chem. Soc., 1964, 86, 5542.

5α-androstane

Apart from hecogenin $[(25 R)-3 \beta$-hydroxy- 5α-spirostan-12-one] all compounds are derived from 5α-androstane and are represented by abbreviated names. Thus the first starting material, described below as $3 \beta-\mathrm{OH}-17$-one, is 3β-hydroxy- 5α-androstan-17-one.

Starting materials: 3β-OH-17-one (I); 17β-OH-3-one (II); 3β-OH-5-en-17-one (III); hecogenin (IV).
Section (A)

Section (B)

Section (C)

Reagents: (1), LiAlH_{4}; (2), $\mathrm{Ac}_{2} \mathrm{O}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$; (3), NaBH_{4}; (4), $\mathrm{Na}-\mathrm{Pr}^{1} \mathrm{OH}$; (5), $\mathrm{LiAlH}\left(\mathrm{OBu}^{t}\right)_{3}$; (6), $\mathrm{Ir}^{\mathrm{VI}}$ chloride-(MeO$)_{3} \mathrm{P}-\mathrm{Pr}^{\mathbf{i}} \mathrm{OH}-$ $\mathrm{H}_{2} \mathrm{O}$; (7), $\mathrm{CH}_{2} \cdot \mathrm{CH} \cdot \mathrm{CH}_{2} \mathrm{Cl}-\mathrm{KOH}$; (8), $\mathrm{EtO} \cdot \mathrm{COCl}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$; (9), $\mathrm{CCl}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{O} \cdot \mathrm{COCl}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$; (10), 2-Furoyl chloride-C5 $\mathrm{H}_{5} \mathrm{~N}$; (11), $\mathrm{LiAlH}_{4}-\mathrm{AlCl}_{3} ;(12), \mathrm{CH}_{2} \mathrm{~N}_{2}-\mathrm{HBF}_{4}$.
${ }^{a}$ Ref. 6. ${ }^{b}$ G. von Mutzenbecher and A. D. Cross, Steroids, 1965, 5, 429. © Ref. 7. d J. Gutzwiller and C. Djerassi, Helv. Chim. Aota, 1966, 49, 2108. © C. Djerassi, R. H. Shapiro, and M. Vandewalle, J. Amer. Chem. Soc., 1965, 87, 4892. f Ref. 1. © C. Djerassi and L. Tökes, J. Amer. Chem. Soc., 1966, 88, 536. ${ }^{h}$ C. Djerassi, G. von Mutzenbecher, J. Fajkos, D. H. Williams, and H. Budzikiewicz, J. Amer. Chem. Soc., 1965, 87, 817. 'L. Mamlok and J. Jacques, Bull. Soc. chim. France, 1960, $484 . ;$ A. Marquet, H. B. Kagan, M. Dvolaitzky, L. Mamlok, C. Weidmann, and J. Jacques, Compt. rend., 1959, 248, 984 . k A. Butenandt, L. Poschmann, G. Failer, U. Schiedt, and E. Biekert, Annalen, 1951, 5\%5, 123. \boldsymbol{i} Ref. $5 b .^{m}$ D. Varech and J. Jacques, Bull. Soc. chim. France, 1965, 67. ${ }^{n}$ Ref. 8. © Ref. 9. ${ }^{p}$ Ref. 10.
N.m.r. signals
CDCl_{3} solutions were examined at 100 MHz . Signals are described in the form used previously. ${ }^{1}$

	Other signals								Other signals		
No.	$\underset{\tau}{19-\mathrm{H}}$	$\underset{\tau}{18-\mathrm{H}}$	τ	Form	Assignment	No.	$\underset{\tau}{19-\mathrm{H}}$	$\underset{\tau}{18-\mathrm{H}}$	τ	Form	Assignment
(II)	8.98	$9 \cdot 24$	$6 \cdot 34$	$\mathrm{t}(8)$	H-17	(XXXIV)	$9 \cdot 20$	$9 \cdot 30$	6.73	$\mathrm{m}(25)$	H-3
(X)	$9 \cdot 16$	$9 \cdot 32$	$5 \cdot 17$	$\mathrm{m}(5)$	H-1	(XXXV)	$9 \cdot 16$	$9 \cdot 30$	$5 \cdot 25$	$\mathrm{m}(23)$	H-3
(XII)	$9 \cdot 05$	$9 \cdot 32$	$5 \cdot 39$	$\mathrm{m}(17)$	H-1	(XXXVI)	$9 \cdot 12$	$9 \cdot 30$	$5 \cdot 08$	$\mathrm{m}(22)$	H-3
(XXII)	$9 \cdot 16$	$9 \cdot 31$	$5 \cdot 30$	$6(4,4,2)$	H-6	(XXXVII)	$9 \cdot 21$	$9 \cdot 31$	$6 \cdot 47$	$\mathrm{m}(10)$	H-3
(XXIV)	$9 \cdot 02$	$9 \cdot 26$	$5 \cdot 01$	m(7)	H-6	(XXXVIII)	$9 \cdot 19$	$9 \cdot 30$	$6 \cdot 74$	$7(11,11,5,5)$	H-3
(XXVI)	$9 \cdot 22$	$9 \cdot 22$	$5 \cdot 01$	t(3)	$\mathrm{H}-12$	(XXXIX)	$9 \cdot 22$	$9 \cdot 31$	$6 \cdot 44$	m(9)	H-3
(XXVIII)	$9 \cdot 20$	$9 \cdot 23$	$5 \cdot 34$	$4(11,5)$	H-12	(XL)	$9 \cdot 20$	$9 \cdot 31$	$6 \cdot 76$	$7(11,11,5,5)$	H-3
(XXXII)	$9 \cdot 05$	$9 \cdot 16$	$5 \cdot 05$	$6(8,8,3)$	H-15	(XLI)	$9 \cdot 22$	$9 \cdot 32$	6.58	$\mathrm{m}(8)$	H-3
(XXXIII)	$9 \cdot 18$	$9 \cdot 31$	$5 \cdot 46$	$\mathrm{m}(17)$	H-3	X(LII)	$9 \cdot 13$	$9 \cdot 22$	$6 \cdot 16$	$10(7 \cdot 5,5 \cdot 5,5 \cdot 5,2)$	H-16

m.p. 166-168 (from MeOH), $[\alpha]_{\mathrm{D}}-26^{\circ}(c 0 \cdot 3)$ (Found: C, 82.6 ; H, 11.9%).
(e) A solution of 5α-androstan-4-one (100 mg) in $\mathrm{Pr}^{\mathrm{i}} \mathrm{OH}$ $(10 \mathrm{ml})$ was heated under reflux with $\mathrm{Na}(1 \mathrm{~g})$ for 1 h . $\mathrm{EtOH}(1 \mathrm{ml})$ was added to destroy the excess of Na . Isolation with $\mathrm{Et}_{2} \mathrm{O}$ gave 5α-androstan- 4α-ol (XVII) (83 mg), m.p. $166.5-168.5^{\circ}$ (from $\mathrm{C}_{6} \mathrm{H}_{14}$), $[\alpha]_{\mathrm{D}}-29^{\circ}$.
(f) A solution of 5α-androstan- 6 -one (300 mg) in tetrahydrofuran (5 ml) was added to a stirred solution of $\mathrm{LiAlH}\left(\mathrm{OBu}^{\mathrm{t}}\right)_{3}(100 \mathrm{mg})$ in tetrahydrofuran $(5 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. Stirring was continued for 3 h at $0^{\circ} \mathrm{C}$ and then for 3 h at $20^{\circ} \mathrm{C}$. Work-up followed by p.l.c. [1 large plate, $2 \times$ petrol-Et $\left.\mathrm{t}_{2} \mathrm{O}(9: 1)\right]$ gave 5α-androstan-6 β-ol (XXIII) (No. 366), m.p. $77.5-78.5^{\circ}(\mathrm{MeOH})$, $[\alpha]_{\mathrm{D}}-13.5^{\circ}(c 1 \cdot 0)$ (Found: $\mathrm{C}, 82 \cdot 6 ; \mathrm{H}, 11 \cdot 5 . \quad \mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}$ requires $\left.\mathrm{C}, 82 \cdot 6 ; \mathrm{H}, 11 \cdot 7 \%\right)$.
(g) $\mathrm{Ir}^{\nabla \mathrm{I}}$ chloride $(14 \mathrm{mg})$ and $(\mathrm{MeO}){ }_{3} \mathrm{P}(0.35 \mathrm{ml})$ were added to a solution of 5α-androstan-12-one (60 mg) in $\mathrm{Pr}^{\mathrm{i}} \mathrm{OH}$ $(3.3 \mathrm{ml})-\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{ml})$, and the stirred mixture was heated under reflux for 3 days. Work-up gave 5α-androstan- 12α-ol (XXV) (No. 129) (29 mg), m.p. 123.5-126 (from MeOH), $[\alpha]_{\mathrm{D}}+41^{\circ}(c \quad 0.6)$ (Found: C, 82.9; H, 11.9. $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}$ requires $\mathrm{C}, 82.5 ; \mathrm{H}, 11.7 \%$).
(h) The following acetates (all having $\nu_{\text {max. }} c a .1735 \mathrm{~cm}^{-1}$) were obtained (in over 80% yield) from the corresponding alcohols by treatment with an excess of $\mathrm{Ac}_{2} \mathrm{O}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(1: 1)$ at $25^{\circ} \mathrm{C}$ for 20 h , work-up, and (apart from three compounds) crystallisation from MeOH .

$\begin{gathered} 1 \alpha-\text {-Acetate (} \mathrm{X} \\ (\text { No. } 394) \end{gathered}$	$\underset{\text { M.p. } /{ }^{\circ} \mathrm{C}}{\text { (Oil) }}$	$\begin{gathered} {[\alpha]_{\mathrm{D}} /^{0}} \\ (c 0 .-1 \cdot 2) \end{gathered}$	Analytical figures *	
			C (\%)	H (\%)
		$+34$	$79 \cdot 5$	$10 \cdot 4$
1β-Acetate (XII)	(Oil)	+51	$79 \cdot 4$	10.6
(No. 395)				
$\begin{aligned} & 2 \alpha \text {-Acetate (XIV) } \\ & \text { (No. 107) } \end{aligned}$	153-155	-23	79•3	$10 \cdot 6$
2β-Acetate (XVI) (No. 108)	82.5-83.5	+11	$79 \cdot 0$	10.7
4α-Acetate (XVIII) (No. 120)	116-118	-5	$79 \cdot 5$	10.7
48-Acetate (XX)	117-118	+12	$79 \cdot 2$	$10 \cdot 4$
$\begin{aligned} & 6 \alpha-\text { Acetate }(\mathrm{XXII}) \\ & \text { (No. 397) } \end{aligned}$	112-113	$+66$	$79 \cdot 2$	$10 \cdot 8$
6β-Acetate (XXIV) (No. 398)	64-66	$+36$	$79 \cdot 2$	10.7
$\begin{aligned} & 12 \alpha-\text { Acetate } \\ & \text { (No. } 399 \text {) } \end{aligned}$	90-93	$+59$	$79 \cdot 0$	$10 \cdot 6$
$\begin{aligned} & 12 \beta \text {-Acetate (XXVIII) } \\ & \text { (No. 400) } \end{aligned}$	61-64	-15	$78 \cdot 9$	10.5
$\begin{aligned} & 15 \alpha-\text { Acetate }(\mathrm{XXX}) \\ & \text { (No. 132) } \end{aligned}$	95.5-96.5	+46	79.2	$10 \cdot 8$
$\begin{gathered} 15 \beta \text {-Acetate } \\ \text { (No. } 401 \text {) } \\ \text { (XXXII) } \\ \hline \end{gathered}$	(Oil)	-57	$78 \cdot 9$	$10 \cdot 6$

Work in Section (B).-(a) EtO $\cdot \mathrm{COCl}(0.53 \mathrm{ml})$ was added to a stirred solution of 5α-androstan- 3β-ol (1.37 g) in $\mathrm{C}_{6} \mathrm{H}_{8}$ $(6 \mathrm{ml})-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(1.4 \mathrm{ml})$ at $10^{\circ} \mathrm{C}$, and the solution was kept at $20^{\circ} \mathrm{C}$ for 3 h . Work-up gave 5α-androstan- $3 \beta-y l$ ethyl carbonate (XXXIII) (No. 407) ($1 \cdot 1 \mathrm{~g}$), m.p. 77-78 ${ }^{\circ}$ (from $\mathrm{EtOH}),[\alpha]_{\mathrm{D}}-7^{\circ}(c 1 \cdot 1)$ (Found: C, 75.9; H, 10.3. $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{3}$ requires $\mathrm{C}, 75 \cdot 8 ; \mathrm{H}, 10 \cdot 4 \%$), $\nu_{\text {max }} 1748 \mathrm{~cm}^{-1}$.
(b) A solution of 5α-androstan- 3β-ol (500 mg) and $\mathrm{CH}_{2}: \mathrm{CH} \cdot \mathrm{CH}_{2} \mathrm{Cl}(4 \mathrm{ml})$ in dioxan (10 ml) was boiled under reflux with powdered $\mathrm{KOH}(4 \mathrm{~g})$ for 6 h . Isolation with $\mathrm{Et}_{2} \mathrm{O}$ gave 3β-allyloxy- 5α-androstane (XXXIV) (No. 408) $(381 \mathrm{mg}), \mathrm{m} . \mathrm{p} .42-44^{\circ}$ (from EtOH), $[\alpha]_{\mathrm{D}}-4.5^{\circ}$ (c 0.4) (Found: $\mathrm{C}, 83.3 ; \mathrm{H}, 11.4 . \quad \mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}$ requires $\mathrm{C}, 83.5 ; \mathrm{H}$, $11 \cdot 4 \%$), $\nu_{\text {max. }} 3075,1645$, and $1090 \mathrm{~cm}^{-1}$.
(c) $\mathrm{CCl}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{O} \cdot \mathrm{COCl}(780 \mathrm{mg})$ was added to a stirred solution of 5α-androstan- 3β-ol $(300 \mathrm{mg})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(6 \mathrm{ml})-$ $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(0.25 \mathrm{ml})$ at $20^{\circ} \mathrm{C}$. After 12 h , isolation with $\mathrm{Et}_{2} \mathrm{O}$ gave 5α-androstan- $3 \beta-y l$ 2,2,2-trichloroethyl carbonate (XXXV) (No. 409) (370 mg), m.p. $111-114^{\circ}$ (from EtOH), $[\alpha]_{\mathrm{D}}-4^{\circ}$ ($c \mathrm{1} \cdot 1$) (Found: C, $58 \cdot 3 ; \mathrm{H}, 7 \cdot 4 ; \mathrm{Cl}, 23 \cdot 6$. $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{Cl}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 58.5 ; \mathrm{H}, 7 \cdot 3 ; \mathrm{Cl}, 23 \cdot 6 \%$), $\nu_{\text {max }}$ $1758 \mathrm{~cm}^{-1}$.
(d) A solution of 2 -furoyl chloride (960 mg) and $5 \alpha-$ androstan- 3β-ol (1 g) in $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(6 \mathrm{ml})$ was stirred at $20^{\circ} \mathrm{C}$ for 12 h . Isolation with $\mathrm{Et}_{2} \mathrm{O}$ gave 5α-androstan- $3 \beta-y l$ 2-furoate (XXXVI) (No. 410) (1.4 g), m.p. 171-172 ${ }^{\circ}$ (from EtOH), $[\alpha]_{\mathrm{D}}+3^{\circ}(c 1 \cdot 0)$ (Found: $\mathrm{C}, 77 \cdot 6 ; \mathrm{H}, 9 \cdot 2 . \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 77 \cdot 8 ; \mathrm{H}, 9 \cdot 3 \%$), $\nu_{\text {max }} 1728,1715$, and $1297 \mathrm{~cm}^{-1}$.
(e) $\mathrm{Et}_{2} \mathrm{O}\left(160 \mathrm{ml}\right.$; distilled from $\left.\mathrm{LiAlH}_{4}\right)$ was added during 15 min , with stirring and cooling, to anhydrous $\mathrm{AlCl}_{3}(6.76 \mathrm{~g})$. After a further 15 min a suspension of $\mathrm{LiAlH}_{4}(0.484 \mathrm{~g})$ in $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{ml})$ was added during 30 min . A solution of 3,3 -ethylenedioxy- 5α-androstane (8.06 g) in $\mathrm{Et}_{2} \mathrm{O}(160 \mathrm{ml})$ was added with stirring during 30 min , and the mixture was stirred at $20^{\circ} \mathrm{C}$ for $15 \mathrm{~h} . \quad 2 \mathrm{~N}-\mathrm{H}_{2} \mathrm{SO}_{4}$ was added, and the material isolated with $\mathrm{Et}_{2} \mathrm{O}$ was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}\left[800 \mathrm{~g}\right.$; deactivated with $\mathrm{H}_{2} \mathrm{O}$ $(5 \%)]$. Petrol- $\mathrm{Et}_{2} \mathrm{O}(49: 1)$ eluted starting material (393 mg). Petrol- $\mathrm{Et}_{2} \mathrm{O}$ ($10: 1$) eluted 5α-androstan-3-one (653 mg), m.p. and mixed m.p. 99.5-101.5 . Petrol-Et $\mathrm{t}_{2} \mathrm{O}$
 (No. 403) (2.36 g), m.p. 99- 100° (from EtOH- $\mathrm{H}_{2} \mathrm{O}$), $[\alpha]_{D}-2.5^{\circ}(c 1.0)$ (Found: C, 78.5; H, 11.05. $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.7 ; \mathrm{H}, 11.3 \%$), $\nu_{\text {max. }} 3593$ and $1053 \mathrm{~cm}^{-1}$. Petrol- $\mathrm{Et}_{2} \mathrm{O}$ (1:2) eluted $3 \beta-(2-h y d r o x y e t h o x y)-5 \alpha$-androstane (XXXVIII) (No. 405) (4.41 g), m.p. 138.5-139.5 ${ }^{\circ}$ (from EtOH), $[\alpha]_{\mathrm{D}}-2^{\circ}(c 1.3)$ (Found: C, $78.5 ; \mathrm{H}, 11.5 \%$), $\nu_{\text {max. }} 3594$ and $1056 \mathrm{~cm}^{-1}$.

Treatment of these alcohols with $\mathrm{Ac}_{2} \mathrm{O}_{-} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(10: 1)$ at $20^{\circ} \mathrm{C}$ for 2 days gave, respectively, the 3α-acetoxy-ether
(XXXIX) (No. 404) as an oil (Found: C, 76.5; H, 10.4. $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{3}$ requires $\mathrm{C}, 76.2 ; \mathrm{H}, 10.6 \%$), $\nu_{\text {max. }} 1745,1236$, and $1116 \mathrm{~cm}^{-1}$, and the 3β-acetoxy-ether (XL) (No. 406), m.p. $51 \cdot 5-52^{\circ}$ (from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$) (Found: C, $\mathbf{7 6} \cdot \mathbf{2}$; H, 10.6%), $\nu_{\text {max }} 1743,1236$, and $1116 \mathrm{~cm}^{-1}$.

Work in Section (C).-A solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}$ was cooled to $0{ }^{\circ} \mathrm{C}$ and was added dropwise to a stirred solution of 5α-androstan- 3β-ol ($2 \cdot 2 \mathrm{~g}$) and 18 N -fluoroboric acid $(1.5 \mathrm{ml})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ until the mixture remained yellow. The solution was kept at $0^{\circ} \mathrm{C}$ for 1 h , filtered, washed with cold $0 \cdot 2 \mathrm{~N}-\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{NaHCO}_{3}$ aq., and $\mathrm{H}_{2} \mathrm{O}$, and dried. Evaporation gave 3β-methoxy- 5α-androstane (XLII) (No. 117) (1.52 g), m.p. $74-75^{\circ}$ (from MeOH), $[\alpha]_{\mathrm{D}}-7^{\circ}$ (c 0.4) (Found: $\mathrm{C}, 82.8 ; \mathrm{H}, 11.9 . \mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}$ requires C , 82.7 ; H, 11.8%), $\nu_{\text {max. }} 1105 \mathrm{~cm}^{-1}$.

Similarly, the following conversions were carried out: 5α-androstan- 3α-ol ($2 \cdot 1 \mathrm{~g}$) $\longrightarrow 3 \alpha$-methoxy- 5α-androstane (XLI) (No. 396) (1.75 g), m.p. $55-57^{\circ}$ (lit., ${ }^{5 b} 55-57^{\circ}$); 5α-androstan- 16β-ol $(73 \mathrm{mg}) \longrightarrow 16 \beta$-metho $x y$ - 5α-androstane (XLIII) (No. 402) (65 mg), m.p. $80-82^{\circ}$ (from MeOH),
${ }^{8}$ R. E. Counsell and P. D. Klimstra, J. Medicin. Chem., 1964, 7, 119.
$[\alpha]_{\mathrm{D}}-1^{\circ}(c 0 \cdot 4)$ (Found: $\mathrm{C}, 82 \cdot 3 ; \mathrm{H}, 11 \cdot 8 . \quad \mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}$ requires C, 82.7 ; H, 11.8%), $\nu_{\text {max }} 1094 \mathrm{~cm}^{-1}$; 3α-hydroxy- $5 \alpha-$ androstan-17-one $(3 \mathrm{~g}) \longrightarrow 3 \alpha$-methoxy- 5α-androstan-17one (XLIV) (No. 154) (2.7 g), m.p. 123-125 (from hexane), $[\alpha]_{\mathrm{D}}+90^{\circ}(c 0.7)$ (lit., ${ }^{8}$ m.p. 124.5-126.5 ${ }^{\circ},[\alpha]_{\mathrm{D}}+81^{\circ}$), $\nu_{\text {max. }}$ 1745 and $1092 \mathrm{~cm}^{-1}$; 3β-hydroxy- 5α-androstan-17-one $(1.6 \mathrm{~g}) \longrightarrow 3 \beta$-methoxy- 5α-androstan-17-one (XLV) (No. 155) $(0.98 \mathrm{~g})$, m.p. $110-112^{\circ}$ (from MeOH$),[\alpha]_{\mathrm{D}}+82^{\circ}$ (c 1.0) (lit., ${ }^{9}$ m.p. $112-114^{\circ},[\alpha]_{\mathrm{D}}+78^{\circ}$), $\nu_{\text {max. }} 1743$ and 1110 cm^{-1}; 17 β-hydroxy- 5α-androstan-3-one $\quad(2 \mathrm{~g}) \longrightarrow 17 \beta-$ methoxy- 5α-androstan- 3 -one (XLVI) (No. 183) (1.4 g), m.p. $110-112^{\circ}$ (from hexane), $[\alpha]_{\mathrm{D}}+33^{\circ}\left(\begin{array}{cc}0.7) & \text { (lit., }{ }^{10} 10\end{array}\right.$ m.p. $89-90.5^{\circ}$), $\nu_{\text {max. }} 1715$ and $1110 \mathrm{~cm}^{-1}$.

We thank the S.R.C. for Studentships (to A. S. C. and A. P.) and a Research Grant, the New Zealand University Grants Committee for a Postdoctoral Fellowship (to W. A. D.), the Rhodes Trust for a Scholarship (to I. M. C.), and Glaxo Laboratories Ltd. for a grant and gifts of chemicals.
[1/1261 Received, July 23rd, 1971]
2 J. Hora, Coll. Czech. Chem. Comm., 1966, 31, 2737.
10 O. Engelfried and M. Schenk, Ger P., 1,117 572/1962.

